On a primal-dual Newton proximal method for convex quadratic programs
نویسندگان
چکیده
Abstract This paper introduces QPDO, a primal-dual method for convex quadratic programs which builds upon and weaves together the proximal point algorithm damped semismooth Newton method. The outer regularization yields numerically stable method, we interpret operator as unconstrained minimization of augmented Lagrangian function. allows inner scheme to exploit sparse symmetric linear solvers multi-rank factorization updates. Moreover, systems are always solvable independently from problem data exact linesearch can be performed. proposed handle degenerate problems, provides mechanism infeasibility detection, warm starting, while requiring only convexity. We present details our open-source C implementation report on numerical results against state-of-the-art solvers. QPDO proves simple, robust, efficient programming.
منابع مشابه
A Primal-dual Interior Point Algorithm for Convex Quadratic Programs
In this paper, we propose a feasible primal-dual path-following algorithm for convex quadratic programs.At each interior-point iteration the algorithm uses a full-Newton step and a suitable proximity measure for tracing approximately the central path.We show that the short-step algorithm has the best known iteration bound,namely O( √ n log (n+1) ).
متن کاملA Primal-Dual Active-Set Method for Convex Quadratic Programming
The paper deals with a method for solving general convex quadratic programming problems with equality and inequality constraints. The interest in such problems comes from at least two facts. First, quadratic models are widely used in real-life applications. Second, in many algorithms for nonlinear programming, a search direction is determined at each iteration as a solution of a quadratic probl...
متن کاملA primal-dual regularized interior-point method for convex quadratic programs
Interior-point methods in augmented form for linear and convex quadratic programming require the solution of a sequence of symmetric indefinite linear systems which are used to derive search directions. Safeguards are typically required in order to handle free variables or rank-deficient Jacobians. We propose a consistent framework and accompanying theoretical justification for regularizing the...
متن کاملA dual method for solving general convex quadratic programs
In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method ...
متن کاملA weighted full-Newton step primal-dual interior point algorithm for convex quadratic optimization
In this paper, a new weighted short-step primal-dual interior point algorithm for convex quadratic optimization (CQO) problems is presented. The algorithm uses at each interior point iteration only full-Newton steps and the strategy of the central path to obtain an ε-approximate solution of CQO. This algorithm yields the best currently wellknown theoretical iteration bound, namely, O( √ n log ε...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Optimization and Applications
سال: 2022
ISSN: ['0926-6003', '1573-2894']
DOI: https://doi.org/10.1007/s10589-021-00342-y